柔性印刷电路(Flexible Printed Circuit,FPC)是高可靠性和优异的柔性印刷电路板,是一种采用柔性基材制成的电路板,通常使用聚酯薄膜、聚酰亚胺(PI)或聚酰胺(PA)等高性能材料。相比于传统的硬板,FPC 具有弯曲性和柔韧性,使其适用于需要弯曲或复杂形状的电子设备和产品。它具有布线密度高、重量轻、厚度薄、可弯曲性好等特点。
概述
FPC,也被称为柔性印刷电路,因其重量轻,厚度薄,自由弯曲和折叠等优异特性而受到青睐。随着电子工业的飞速发展,电路板设计越来越向高精度、高密度方向发展。传统的人工检测方法已不能满足生产需要,FPC缺陷自动检测已成为工业发展的必然趋势。
柔性电路板(Flexible Printed Circuit,FPC)是一种采用柔性基材制成的电路板,通常使用聚酯薄膜、聚酰亚胺(PI)或聚酰胺(PA)等高性能材料。相比于传统的硬板,FPC 具有弯曲性和柔韧性,使其适用于需要弯曲或复杂形状的电子设备和产品。以下是 FPC 的一些主要特点和应用:
柔性和薄型设计: FPC 由柔性基材制成,可以在不影响性能的情况下弯曲和弯折。这使得 FPC 适用于一些狭小空间和复杂形状的电子设备,例如可穿戴设备、折叠手机、摄像头模块等。
轻量化: 由于采用了柔性基材,FPC 相对于传统硬板更轻巧。这对于要求产品轻量化的应用非常有优势,如航空航天领域和便携式电子设备。
高密度连接: FPC 上可以实现高密度的电气连接和导线布线,有助于实现复杂电路设计。这使得 FPC 特别适用于一些需要大量连接和细密导线的应用,如平板显示器、数码相机等。
抗振动和抗冲击性: 由于 FPC 的柔性特性,它对振动和冲击有较好的抵抗能力。这使得 FPC 适用于一些需要高度可靠性和抗干扰性的场合,如汽车电子、医疗设备等。
自动化制造: FPC 的生产通常采用印刷电路板(PCB)的类似工艺,具有一定的自动化制造能力,提高了生产效率。
FPC 的应用范围非常广泛,包括但不限于以下领域:
移动设备: 折叠手机、平板电脑等。
医疗设备: 医疗传感器、医疗成像设备等。
汽车电子: 车载显示屏、车载摄像头等。
航空航天: 航空电子设备、航天器内部连接等。
消费电子: 数码相机、耳机、智能手表等。
柔性印刷电路(FPC)是20世纪70年代美国为发展航天火箭技术而开发的一项技术。它由聚酯薄膜或聚酰亚胺作为基材制成,可靠性高,柔韧性好。通过在柔性薄塑料片上嵌入电路设计,可以在狭窄有限的空间内堆叠大量精密元件,形成柔性电路。这种电路可以随意弯曲、折叠,重量轻,体积小,散热好,安装方便,突破了传统的互连技术。在柔性电路的结构中,材料有绝缘薄膜、导体和粘合剂。柔性印刷电路是满足电子产品小型化和移动化要求的唯一解决方案。柔性印刷电路可以大大减小电子产品的体积和重量,适合电子产品向高密度、小型化、高可靠性方向发展。
绝缘薄膜材料的种类很多,但最常用的是聚酰亚胺和聚酯材料。美国所有柔性电路制造商中近80%使用聚酰亚胺薄膜材料,约20%使用聚酯薄膜材料。聚酰亚胺材料不易燃,几何稳定,撕裂强度高,耐焊接温度。聚酯,又称聚对苯二甲酸乙二醇酯(PET),其物理性能与聚酰亚胺相似,介电常数较低,吸湿少,但不耐高温。聚酯的熔点为250°C,玻璃化转变温度(Tg)为80°C,这限制了它们在需要大量端焊的应用中的使用。在低温应用中,它们表现出刚性。然而,它们适用于手机和其他不需要暴露在恶劣环境中的产品。聚酰亚胺绝缘膜通常与聚酰亚胺或丙烯酸胶粘剂组合,聚酯绝缘材料一般与聚酯胶粘剂组合。
2 导体
铜箔适合用在柔性电路中。它可以电沉积(ED)或电镀。电沉积铜箔的一面表面有光泽,而另一面的加工表面是暗淡的。它是一种柔韧的材料,可以制成许多厚度和宽度。ED铜箔的哑光面往往经过特殊处理,以提高其粘接能力。锻造铜箔除了具有柔韧性外,还具有刚性和光滑度的特点。适用于需要动态偏转的应用场合。
3 胶粘剂
胶粘剂除了将绝缘膜粘接到导电材料上外,还可以作为覆盖层,作为保护涂层,作为覆盖涂层。两者的主要区别在于使用的应用方法。所述覆盖层与所述覆盖绝缘膜粘结形成具有层压结构的电路。网印技术用于胶粘剂的覆盖和涂布。并非所有的层压板结构都含有粘合剂,没有粘合剂的层压板形成更薄的电路和更大的灵活性。与基于胶粘剂的层压结构相比,具有更好的导热性。由于无粘合剂柔性电路的薄结构和消除了粘合剂的热阻,从而提高了导热性。它可以用于基于粘接层压结构的柔性电路不能使用的工作环境。
FPC的的类型比较多,有单面FPC,双面以及多层。
1 双面或者多层板电路板的工艺流程,切割→钻孔→PTH→电镀→预处理→干贴膜→对准→曝光→显影→图文电镀→剥离→预处理→干贴膜→对准曝光→显影→蚀刻→剥离→表面处理→粘贴盖板膜→压制→固化→浸镀镍金→印刷文字→剪切→电试→冲孔→终检→包装→装运
2 单面板电路板的工艺流程,切割→钻孔→粘贴干膜→对准→曝光→显影→蚀刻→剥离→表面处理→覆盖膜→压制→固化→表面处理→浸镍金→印刷字→切割→电测→冲孔切割→终检→包装→装运
这些工艺并不是一尘不变的,可以根据实际的情况增减部分流程。
柔性印刷电路的优点
柔性印刷电路板是采用柔性绝缘基板制成的印刷电路,具有刚性印刷电路板所不具备的许多优点:
1. 可自由弯曲、绕线、折叠,可根据空间布局要求任意排列,并可在三维空间中移动、扩展,从而实现组件装配与电线连接的一体化。
2. 使用FPC可以大大减小电子产品的体积和重量,适合电子产品向高密度、小型化、高可靠性方向发展。因此,FPC已广泛应用于航空航天、军事、移动通信、笔记本电脑、计算机外围设备、pda、数码相机等领域或产品。
3.FPC还具有良好的散热性和可焊性,易于组装,整体成本低等优点。软硬结合的设计也在一定程度上弥补了柔性基板在元器件承载能力上的轻微不足。
柔性印刷电路的缺点
1. 一次性初始成本高:由于柔性PCB是为特殊应用而设计和制造的,因此初始电路设计,布线和摄影大师需要更高的成本。除非有特殊需要应用柔性PCB,否则通常最好不要在少量应用中使用。
2. FPC的更换和维修困难:柔性PCB一旦制作完成,必须从底图或编好的绘光程序进行更改,因此不容易更改。表面覆盖一层保护膜,修复前必须将其去除,修复后必须恢复,这是一项相对困难的任务。
3.尺寸受限制:柔性印制板在尚未普及时通常采用批量方法制造。因此,由于生产设备的大小,它们不能做得很长很宽。
4. 易损坏:安装和连接人员操作不当,易造成电路损坏,其焊接和返工需要经过培训的人员操作。
1. 焊接前应先在焊盘上涂上助焊剂,并用烙铁进行处理,以免焊盘镀锡不良或氧化而导致焊接不良。芯片一般不需要加工。
2. 使用镊子小心地将PQFP芯片放置在PCB板上,以免损坏引脚。将其与pad对齐,并确保芯片放置在正确的方向。将烙铁的温度调到300摄氏度以上,在烙铁的尖端沾上少量焊锡,用工具将对齐好的芯片压下,在两个对角引脚上加入少量焊锡。按住芯片,焊接两个对角线位置上的引脚,使芯片固定不动。焊接对角后,重新检查芯片位置的对齐。如有必要,调整或移除并重新调整PCB板上的位置。
3.当开始焊接所有引脚时,在烙铁的尖端添加焊料,并在所有引脚上涂上助焊剂,以保持引脚湿润。用烙铁的尖端触摸芯片的每个引脚的末端,直到你看到焊料流入引脚。焊接时,应使烙铁的尖端与焊接引脚平行,防止因焊接过多而重叠。
4. 焊接所有引脚后,用助焊剂湿润所有引脚以清洁焊料。吸掉多余的焊料,以消除任何短路和重叠。最后用镊子检查是否有误焊现象。检查完成后,将焊料从电路板上取下,用酒精浸泡硬毛刷,沿引脚方向仔细擦拭,直至焊料消失。
5. SMD电阻-电容元件相对容易焊接。可以先把它放在焊点上,然后把元件的一端放上去,用镊子夹住元件,一端焊好后再看放置是否正确。如果它已经对齐,然后焊接另一端。
FPC金手指工艺
ZIF(Zero Insertion Force)插接是一种用于连接柔性电路板(FPC)到设备主板或其他电子组件的插接方式。这种插接方式的特点是在插入或拔出 FPC 时无需施加额外的插入力,因此称为"零插入力"。以下是关于 ZIF 插接和 FPC 金手指的一些关键信息:
ZIF 插接机制: ZIF 插接通常涉及一个带有夹口的插座,FPC 的金手指通过夹口插入插座中。这种插座具有一个可移动的夹口,通过拉动或旋转夹口可以打开或关闭插座。在插入或拔出 FPC 时,用户无需额外的插入或拔出力,因为夹口的设计可以自动夹住或释放金手指。
FPC 金手指: FPC 的一端通常具有金属导体形成的金手指,它们与插座的引脚相对应。金手指的设计和排列与特定的插座兼容,确保正确的电气连接。
对准和位置: 在进行 ZIF 插接时,非常重要的一步是确保 FPC 的金手指正确对准插座的引脚,并且在插入时保持正确的位置。对准不良可能导致连接不可靠,影响电气性能。
ZIF 插接应用: ZIF 插接广泛应用于对连接可靠性和插拔次数要求较高的场景,如便携式设备、数码相机、医疗设备等。由于 ZIF 插接不需要额外的插入力,可以降低对 FPC 和相关连接器的磨损,提高可靠性。
注意事项: 在进行 ZIF 插接时,需要小心操作,避免弯曲 FPC,确保金手指和引脚的清洁,以维持良好的电气连接。此外,要注意插接的次数,因为 ZIF 插接的次数有限,过多的插拔可能导致连接不可靠。
FPC金手指常用于排线类产品,如ZIF连接器等,这类金手指也称为插拔金手指。FPC金手指处的厚度需要与连接器座子的厚度匹配,太薄了会导致接触不良,甚至脱落,太厚了也会无法插入到座子里面,厚度公差一般要求+/-0.03mm。
FPC上传输的信号速率越来越高,尤其是在一些光模块或者高速消费类产品上,比如手机、笔记本电脑等。对于特别高速的产品,在使用FPC的时候,为了减少一些网格铜对信号的影响,通常在信号线下采用实铜作为参考。不管使用什么样的设计,FPC的仿真就显得非常重要。
关于FPC的弯曲半径
在FPC在弯曲时,其中心线两边所受的应力类型是不一样的。弯曲曲面的内侧是压力,外侧是拉力。所受应力的大小与FPC的厚度和弯曲半径有关。过大的应力会使得FPC分层、铜箔断裂等等。因此在设计时应合理安排FPC的层压结构,使得弯曲面中心线两端层压尽量对称。同时还要根据不同的应用场合来计算最小弯曲半径。
弯曲半径要求的计算
情况1、对单面柔性电路板的最小弯曲如下图所示:
它的最小弯曲半径可以由下面公式计算:
R=(c/2)[(100-Eb)/Eb]-D
其中:
R=最小弯曲半径(单位µm)
c=铜皮厚度(单位µm)
D=覆盖膜厚度(单位µm)
EB=铜皮允许变形量(以百分数衡量)
不同类型铜,铜皮变形量不同。
A、压碾铜的铜皮变形量最大值是≤16%
B、电解铜的铜皮变形量最大值是≤11%。
而且在不同的使用场合,同一材料的铜皮变形量取值也不一样。对于一次性弯曲的的场合,使用折断临界状态的极限值(对延碾铜,该值为16%)。对于弯曲安装设计情况,使用IPC-MF-150规定的最小变形值(对延碾铜,该值为10%)。对于动态柔性应用场合,铜皮变形量用0.3%。而对于磁头应用,铜皮变形量用0.1%。通过设置铜皮允许的变形量,就可以算出弯曲的最小半径。
动态柔性:这种铜皮应用的场景是通过变形实现功能的,打个比方:IC卡座内的磷铜弹片,就是IC卡插入后与芯片接触的部位,插的过程弹片不断的形变,这种应用场景就是柔性动态的。
例:50µm 聚酰亚胺,25µm胶,35µm铜 因此,D=75µm,c=35µm 柔性板的总厚度T=185µm
一次性弯曲,用16% R=16.9µm,或R/T=0.09
弯曲安装,用10% R=80µm,或R/T=0.45
动态弯曲,用0.3% R=5.74mm,或R/T=31
(注:百度文库上华为规范中,单位错误!!!)
对于上图中的场景,需要有连接器插入的场景,需要按照“动态弯曲”进行计算,弯曲半径控制在>6mm,直径>12mm。
粗略算法:大约要大于总厚度的50倍左右。
情况2、双面板
其中:
R=最小弯曲半径,单位µm
c=铜皮厚度,单位µm
D=覆盖膜厚度,单位µm
EB=铜皮变形量,以百分数衡量。
EB的取值与上面的一样。
d=层间介质厚度,单位µm
例如:
基材厚度:50µm 聚酰亚胺;
2x25µm胶;
2x35µm 铜 则d=100µm;c=35µm
覆盖膜厚度:25µm聚酰亚胺;50µm胶 则D=75µm
总厚:T=2D+d+2c=320µm
从方程中:
一次性弯曲,EB=16% R=0.371µm,R/T=1.16
弯曲安装,EB =10% R=0.690mm,
R/T=2.15 动态弯曲,EB =0.3% R=28.17mm,R/T=88
粗略算法:大约要大于总厚度的100倍左右。
弯曲半径不达标,导致安装次数过多之后,导线断裂,设备不稳定的等问题。
FPC设计的禁忌
禁忌1:FPC上封装设计,边缘焊盘需要加强
禁忌2:手指根部不做保护
禁忌3:补强线离手指根部太近
禁忌4:内直角,易断裂
禁忌5、正反焊盘位置重合
禁忌6、弯折区只有0.5的角度,分板时容易造成撕裂现。不做加强。
解决方案:如何防止弯折区断裂和撕裂,设计要考虑在靠转角处增加防撕裂线或加大靠外形处线路,外形角度须改成为1.0mm。
FPC的保护方法
1、柔性型材上的内角的最小半径为1.6 mm。半径越大,可靠性越高,抗撕裂性越强。在形状的角落,可以添加靠近板边缘的线以防止FPC被撕裂。
2、FPC上的裂缝或槽必须以直径不小于1.5 mm的圆孔结束,这在FPC的相邻两个部分需要单独移动的情况下也是必需的。
3、为了获得更好的柔韧性,需要在均匀的宽度区域中选择弯曲区域,并且尽可能在弯曲区域中FPC宽度变化和迹线密度不均匀。
4、加强筋(Stiffener)又称加强筋,主要用于获得外部支撑,材料的使用有PI,聚酯,玻璃纤维,高分子材料,铝,钢等。合理设计加强板的位置,面积和材料对避免FPC撕裂有很大的作用。
5、在多层FPC设计中,需要在产品使用期间经常弯曲的区域进行气隙分层设计。尝试使用薄材料PI材料来增加FPC柔软度,防止FPC在反复弯曲过程中破裂。
6、当空间允许时,应在金手指和连接器之间的接合处设计双面胶固定区域,以防止金手指和连接器在弯曲过程中脱落。
7、FPC定位丝网应设计在FPC和连接器之间的连接处,以防止FPC在装配过程中歪斜。
刚柔板
刚柔板的本质是将FPC作为PCB的一个层或者两个电路层,再对PCB的刚性进行部分铣加工,只保留柔性部分。
软硬结合板是什么:
FPC与PCB的诞生与发展,催生了软硬结合板这一新产品。因此,软硬结合板,就是柔性线路板与硬性线路板,经过压合等工序,按相关工艺要求组合在一起,形成的具有FPC特性与PCB特性的线路板。
生产流程:
因为软硬结合板是FPC与PCB的组合,软硬结合板的生产应同时具备FPC生产设备与PCB生产设备。首先,由电子工程师根据需求画出软性结合板的线路与外形,然后,下发到可以生产软硬结合板的工厂,经过CAM工程师对相关文件进行处理、规划,然后安排FPC产线生产所需FPC、PCB产线生产PCB,这两款软板与硬板出来后,按照电子工程师的规划要求,将FPC与PCB经过压合机无缝压合,再经过一系列细节环节,最终就制程了软硬结合板。很重要的一个环节,应为软硬结合板难度大,细节问题多,在出货之前,一般都要进行全检,因其价值比较高,以免让供需双方造成相关利益损失。
优点与缺点:
优点:软硬结合板同时具备FPC的特性与PCB的特性,因此,它可以用于一些有特殊要求的产品之中,既有一定的挠性区域,也有一定的刚性区域,对节省产品内部空间,减少成品体积,提高产品性能有很大的帮助。
缺点:软硬结合板生产工序繁多,生产难度大,良品率较低,所投物料、人力较多,因此,其价格比较贵,生产周期比较长。
刚柔板并不便宜,为什么采用刚柔板?
在硬件设计的时候,成本往往不是关键要素;
第一、可靠性:刚柔板能够解决FPC的安装可靠性问题。
在FPC通过连接器进行连接,带来了安装成本,安装不方便,安装可靠性的问题,同时容易短路,脱落等问题。在海康威视的某款海量发货的筒机设计上面看到了FPC安装之后,对FPC与PCB进行补焊的现象。刚柔板解决了FPC安装可靠性的问题。
第二、综合成本:
刚柔板,虽然单位面积的价格提高了,但是节约了连接器的费用,同时减少了安装时间,减少了返修率,减少了返修率,提高了可生产性和可靠性。在海量发货的产品使用,往往是有效降低成本的。
所以计算的成本:
刚柔板面积*刚柔板单价 - 加工时间成本 - FPC松脱返修成本*松脱概率 – 较少单板种类带来的管理成本 是否大于 原PCB面积*PCB单价+FPC价格+连接器价格
第三、有效改善信号质量
由于不通过连接器进行连接,走线连续性更好,信号完整性更好。
传统IPC使用FPC和连接器,对Sensor(视频传感器)板和主控板进行对接。
使用刚柔板可以把主控板和sensor板做成一体,解决了很多问题,同时也符合筒机的结构设计需求。
2、 刚柔板的设计注意点:
A、 需要考虑柔性板的弯曲半径,弯曲半径过小会容易损坏。
B、 有效减少总面积,优化设计减小成本。
C、 需要考虑安装后立体空间的结构问题。
D、 需要考虑柔性部分走线的层数最佳设计。